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Part Of Speech Tagging 

•  Annotate each word in a sentence with a 
part-of-speech marker. 

•  Lowest level of syntactic analysis. 

•  Useful for subsequent syntactic parsing and 
word sense disambiguation. 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 
NNP VBD DT  NN  CC  VBD     TO VB  PRP IN DT    NN 
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English POS Tagsets 

•  Original Brown corpus used a large set of 
87 POS tags. 

•  Most common in NLP today is the Penn 
Treebank set of 45 tags. 
– Tagset used in these slides. 
– Reduced from the Brown set for use in the 

context of a parsed corpus (i.e. treebank). 
•  The C5  tagset used for the British National 

Corpus (BNC) has 61 tags. 
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English Parts of Speech 

•  Noun (person, place or thing) 
–  Singular (NN):  dog, fork 
–  Plural (NNS):  dogs, forks 
–  Proper (NNP, NNPS): John, Springfields 
–  Personal pronoun (PRP): I, you, he, she, it 
–  Wh-pronoun  (WP): who, what 

•  Verb (actions and processes) 
–  Base, infinitive (VB):  eat 
–  Past tense (VBD):  ate 
–  Gerund (VBG):  eating 
–  Past participle (VBN):  eaten 
–  Non 3rd person singular present tense (VBP): eat 
–  3rd person singular present tense: (VBZ): eats 
–  Modal (MD): should, can 
–  To (TO): to (to eat) 
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English Parts of Speech (cont.) 

•  Adjective (modify nouns) 
–  Basic (JJ): red, tall 
–  Comparative (JJR): redder, taller 
–  Superlative (JJS): reddest, tallest 

•  Adverb (modify verbs) 
–  Basic (RB): quickly 
–  Comparative (RBR): quicker 
–  Superlative (RBS): quickest 

•  Preposition (IN): on, in, by, to, with 
•  Determiner: 

–  Basic (DT) a, an, the 
–  WH-determiner (WDT): which, that 

•  Coordinating Conjunction (CC): and, but, or, 
•  Particle (RP): off (took off), up (put up) 



Closed vs. Open Class  

•  Closed class categories are composed of a 
small, fixed set of grammatical function 
words for a given language. 
– Pronouns, Prepositions, Modals, Determiners, 

Particles, Conjunctions 
•  Open class categories have large number of 

words and new ones are easily invented. 
– Nouns (Googler, textlish), Verbs (Google), 

Adjectives (geeky), Abverb (chompingly)  

6 
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Ambiguity in POS Tagging 

•  “Like” can be a verb or a preposition 
–  I like/VBP candy. 
– Time flies like/IN an arrow. 

•  “Around” can be a preposition, particle, or 
adverb 
–  I bought it at the shop around/IN the corner. 
–  I never got around/RP to getting a car. 
– A new Prius costs around/RB $25K. 
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POS Tagging Process 

•  Usually assume a separate initial tokenization process that 
separates and/or disambiguates punctuation, including 
detecting sentence boundaries. 

•  Degree of ambiguity in English (based on Brown corpus) 
–  11.5% of word types are ambiguous. 
–  40% of word tokens are ambiguous. 

•  Average POS tagging disagreement amongst expert human 
judges for the Penn treebank was 3.5% 
–  Based on correcting the output of an initial automated tagger, 

which was deemed to be more accurate than tagging from scratch. 
•  Baseline: Picking the most frequent tag for each specific 

word type gives about 90% accuracy 
–  93.7% if use model for unknown words for Penn Treebank tagset. 
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POS Tagging Approaches 

•  Rule-Based: Human crafted rules based on lexical 
and other linguistic knowledge. 

•  Learning-Based: Trained on human annotated 
corpora like the Penn Treebank. 
–  Statistical models:  Hidden Markov Model (HMM), 

Maximum Entropy Markov Model (MEMM), 
Conditional Random Field (CRF) 

–  Rule learning: Transformation Based Learning (TBL) 
•  Generally, learning-based approaches have been 

found to be more effective overall, taking into 
account the total amount of human expertise and 
effort involved. 
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Classification Learning 

•  Typical machine learning addresses the problem 
of classifying a feature-vector description into a 
fixed number of classes. 

•  There are many standard learning methods for this 
task: 
–  Decision Trees and Rule Learning 
–  Naïve Bayes and Bayesian Networks 
–  Logistic Regression / Maximum Entropy (MaxEnt) 
–  Perceptron and Neural Networks 
–  Support Vector Machines (SVMs) 
–  Nearest-Neighbor / Instance-Based 
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Beyond Classification Learning 

•  Standard classification problem assumes 
individual cases are disconnected and independent 
(i.i.d.: independently and identically distributed). 

•  Many NLP problems do not satisfy this 
assumption and involve making many connected 
decisions, each resolving a different ambiguity, 
but which are mutually dependent. 

•  More sophisticated learning and inference 
techniques are needed to handle such situations in 
general. 
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Sequence Labeling Problem 

•  Many NLP problems can viewed as sequence 
labeling. 

•  Each token in a sequence is assigned a label. 
•  Labels of tokens are dependent on the labels of 

other tokens in the sequence, particularly their 
neighbors (not i.i.d). 

foo        bar         blam     zonk       zonk            bar           blam 
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Information Extraction 

•  Identify phrases in language that refer to specific types of 
entities and relations in text. 

•  Named entity recognition is task of identifying names of 
people, places, organizations, etc. in text. 

      people    organizations    places 
–  Michael Dell is the CEO of  Dell Computer Corporation and lives 

in Austin Texas.  
•  Extract pieces of information relevant to a specific  

application, e.g. used car ads: 
       make    model   year    mileage   price 

–  For sale, 2002 Toyota Prius,  20,000 mi, $15K or best offer. 
Available starting July 30, 2006. 



14 

Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

NNP 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VBD 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

DT 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

NN 



18 

Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

CC 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VBD 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

TO 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VB 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

PRP 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

IN 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

DT 
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Sequence Labeling as Classification 

•  Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window). 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

NN 
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Sequence Labeling as Classification 
Using Outputs as Inputs 

•  Better input features are usually the 
categories of the surrounding tokens, but 
these are not available yet. 

•  Can use category of either the preceding or 
succeeding tokens by going forward or back 
and using previous output. 
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Forward Classification 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

NNP 
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Forward Classification 

 NNP 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VBD 
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Forward Classification 

NNP  VBD 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

DT 
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Forward Classification 

 NNP VBD DT 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

NN 
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Forward Classification 

 NNP VBD DT  NN 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

CC 
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Forward Classification 

 NNP VBD DT NN  CC 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VBD 
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Forward Classification 

 NNP VBD DT NN  CC    VBD 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

TO 
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Forward Classification 

 NNP VBD DT NN  CC    VBD   TO 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VB 
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Forward Classification 

NNP VBD DT NN  CC    VBD   TO  VB 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

PRP 
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Forward Classification 

 NNP VBD DT NN  CC    VBD   TO  VB PRP 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

IN 
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Forward Classification 

NNP VBD DT NN  CC    VBD   TO  VB PRP  IN 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

DT 
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Forward Classification 

NNP VBD DT NN  CC    VBD   TO  VB PRP  IN  DT 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

NN 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

NN 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                                                                                            NN 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

DT 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                                                                                  DT   NN 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

IN 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                                                                           IN   DT     NN 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

PRP 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                                                                    PRP IN  DT   NN 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VB 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                                                            VB  PRP IN  DT   NN 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

TO 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                                                      TO  VB  PRP IN  DT   NN  
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VBD 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                                           VBD   TO  VB  PRP IN  DT   NN  
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

CC 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                                  CC    VBD   TO  VB  PRP IN  DT   NN  
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VBD 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                        VBD  CC   VBD   TO  VB  PRP IN  DT   NN 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

DT 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

                  DT VBD  CC  VBD   TO  VB  PRP IN  DT   NN 
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

VBD 
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Backward Classification 

•  Disambiguating “to” in this case would be 
even easier backward. 

         VBD DT VBD CC   VBD   TO  VB  PRP IN  DT   NN  
John  saw  the  saw  and  decided  to  take  it     to   the   table. 

classifier 

NNP 
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Problems with Sequence Labeling as 
Classification 

•  Not easy to integrate information from 
category of tokens on both sides. 

•  Difficult to propagate uncertainty between 
decisions and “collectively” determine the 
most likely joint assignment of categories to 
all of the tokens in a sequence.  
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Probabilistic Sequence Models 

•  Probabilistic sequence models allow 
integrating uncertainty over multiple, 
interdependent classifications and 
collectively determine the most likely 
global assignment. 

•  Two standard models 
– Hidden Markov Model  (HMM) 
– Conditional Random Field (CRF) 
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Markov Model / Markov Chain 

•  A finite state machine with probabilistic 
state transitions. 

•  Makes Markov assumption that next state 
only depends on the current state and 
independent of previous history. 
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Sample Markov Model for POS 

0.95 

0.05 

0.9 

0.05 
stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

start 
0.1 

0.5 
0.4 

Det Noun 

PropNoun 

Verb 
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Sample Markov Model for POS 

0.95 

0.05 

0.9 

0.05 
stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

start 
0.1 

0.5 
0.4 

Det Noun 

PropNoun 

Verb 

P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076 
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Hidden Markov Model 

•  Probabilistic generative model for sequences. 
•  Assume an underlying set of hidden (unobserved) 

states in which the model can be (e.g. parts of 
speech). 

•  Assume probabilistic transitions between states over 
time (e.g. transition from POS to another POS as 
sequence is generated). 

•  Assume a probabilistic generation of tokens from 
states (e.g. words generated for each POS). 
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Sample HMM for POS 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 
0.25 

start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

John  start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

John  start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

John bit  start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

John bit  start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

John bit the start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

John bit the start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

John bit the apple start 
0.1 

0.5 
0.4 
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Sample HMM Generation 

PropNoun 

John Mary 
Alice Jerry 

Tom 

Noun 

cat 
dog 

car 
pen 

bed 
apple 

Det 

a the 
the 

the 

that 
a the a 

Verb 

bit 

ate saw 
played 

hit 

0.95 

0.05 

0.9 

gave 
0.05 

stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

John bit the apple start 
0.1 

0.5 
0.4 
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Formal Definition of an HMM 

•  A set of N +2 states S={s0,s1,s2, … sN, sF} 
–  Distinguished start state:  s0 
–  Distinguished final state: sF 

•  A set of M possible observations V={v1,v2…vM} 
•  A state transition probability distribution A={aij} 

•  Observation probability distribution for each state j 
B={bj(k)} 

•  Total parameter set λ={A,B} 
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HMM Generation Procedure 

•  To generate a sequence of T observations:  
O = o1 o2 … oT 

Set initial state q1=s0 
For t = 1 to T 
      Transit to another state qt+1=sj based on transition  
          distribution aij for state qt 
      Pick an observation ot=vk based on being in state qt using  
          distribution bqt(k) 
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Three Useful HMM Tasks 

•  Observation Likelihood: To classify and 
order sequences. 

•  Most likely state sequence (Decoding): To 
tag each token in a sequence with a label. 

•  Maximum likelihood training (Learning): To 
train models to fit empirical training data. 
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HMM: Observation Likelihood 

•  Given a sequence of observations, O, and a model 
with a set of parameters, λ, what is the probability 
that this observation was generated by this model: 
P(O| λ) ? 

•  Allows HMM to be used as a language model: A 
formal probabilistic model of a language that 
assigns a probability to each string saying how 
likely that string was to have been generated by 
the language. 

•  Useful for two tasks: 
–  Sequence Classification 
–  Most Likely Sequence 
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Sequence Classification 

•  Assume an HMM is available for each category 
(i.e. language). 

•  What is the most likely category for a given 
observation sequence, i.e. which category’s HMM 
is most likely to have generated it? 

•  Used in speech recognition to find most likely 
word model to have generate a given  sound or 
phoneme sequence. 

Austin Boston 

? ? 

P(O | Austin) > P(O | Boston) ? 

ah  s  t  e  n 
O 
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Most Likely Sequence 

•  Of two or more possible sequences, which 
one was most likely generated by a given 
model? 

•  Used to score alternative word sequence 
interpretations in speech recognition. 

Ordinary English 

dice precedent core 

vice president Gore 

O1 

O2 

? 

? 

P(O2 | OrdEnglish) > P(O1 | OrdEnglish) ? 
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HMM: Observation Likelihood 
Naïve Solution 

•  Consider all possible state sequences, Q, of length 
T that the model could have traversed in 
generating the given observation sequence. 

•  Compute the probability of a given state sequence 
from A, and multiply it by the probabilities of 
generating each of given observations in each of 
the corresponding states in this sequence to get 
P(O,Q| λ) = P(O| Q, λ) P(Q| λ) . 

•  Sum this over all possible state sequences to get 
P(O| λ). 

•  Computationally complex: O(TNT). 
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HMM: Observation Likelihood 
Efficient Solution 

•  Due to the Markov assumption, the probability of 
being in any state at any given time t only relies 
on the probability of being in each of the possible 
states at time t−1. 

•  Forward Algorithm: Uses dynamic programming 
to exploit this fact to efficiently compute 
observation likelihood in O(TN2) time. 
–  Compute a forward trellis that compactly and implicitly 

encodes information about all possible state paths. 



Forward Probabilities 

•  Let αt(j) be the probability of being in state j 
after seeing the first t observations (by 
summing over all initial paths leading to j). 

76 



Forward Step 

77 

s1 
s2 

sN 

• 
• 
• 

sj 

αt-1(i) αt(i) 

a1j 
a2j 

aNj 

a2j 

•  Consider all possible ways of 
getting to sj at time t by coming 
from all possible states si and 
determine probability of each. 

•  Sum these to get the total 
probability of being in state sj  at 
time t  while accounting for the 
first t −1 observations. 

•  Then multiply by the probability 
of actually observing ot in sj. 



Forward Trellis  
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s1 
s2 

sN 

• 
• 
• 

• 
• 
• 

s0 sF • 
• 
• 

• 
• 
• 

• 
• 
• 

•    •   • 
•    •   • 

•    •   • 

•    •   • 

t1 t2 t3 tT-1 tT 

•  Continue forward in time until reaching final time 
point and sum probability of ending in final state. 



Computing the Forward Probabilities 

•  Initialization 

•  Recursion 

•  Termination 

79 



Forward Computational Complexity 

•  Requires only O(TN2) time to compute the 
probability of an observed sequence given a 
model. 

•  Exploits the fact that all state sequences 
must merge into one of the N possible states 
at any point in time and the Markov 
assumption that only the last state effects 
the next one. 
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Most Likely State Sequence (Decoding) 

•  Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=q1,q2,…qT, 
that generated this sequence from this model? 

•  Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory. 

John gave the dog an apple.  



82 

Most Likely State Sequence 

•  Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=q1,q2,…qT, 
that generated this sequence from this model? 

•  Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory. 

John gave the dog an apple.  

Det   Noun  PropNoun Verb  



83 

Most Likely State Sequence 

•  Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=q1,q2,…qT, 
that generated this sequence from this model? 

•  Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory. 

John gave the dog an apple.  

Det   Noun  PropNoun Verb  



84 

Most Likely State Sequence 

•  Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=q1,q2,…qT, 
that generated this sequence from this model? 

•  Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory. 

John gave the dog an apple.  

Det   Noun  PropNoun Verb  



85 

Most Likely State Sequence 

•  Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=q1,q2,…qT, 
that generated this sequence from this model? 

•  Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory. 

John gave the dog an apple.  

Det   Noun  PropNoun Verb  



86 

Most Likely State Sequence 

•  Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=q1,q2,…qT, 
that generated this sequence from this model? 

•  Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory. 

John gave the dog an apple.  

Det   Noun  PropNoun Verb  



87 

Most Likely State Sequence 

•  Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=q1,q2,…qT, 
that generated this sequence from this model? 

•  Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory. 

John gave the dog an apple.  

Det   Noun  PropNoun Verb  



88 

HMM: Most Likely State Sequence 
Efficient Solution 

•  Obviously, could use naïve algorithm based 
on examining every possible state sequence of 
length T. 

•  Dynamic Programming can also be used to 
exploit the Markov assumption and efficiently 
determine the most likely state sequence for a 
given observation and model. 

•  Standard procedure is called the Viterbi 
algorithm (Viterbi, 1967) and also has O(N2T) 
time complexity. 



Viterbi Scores 

•  Recursively compute the probability of the most 
likely subsequence of states that accounts for the 
first t observations and ends in state sj.  
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•  Also record “backpointers” that subsequently allow 
backtracing the most probable state sequence. 
  btt(j) stores the state at time t-1 that maximizes the 

probability that system was in state sj at time t (given 
the observed sequence). 



Computing the Viterbi Scores 

•  Initialization 

•  Recursion 

•  Termination 
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Analogous to Forward algorithm except take max instead of sum 



Computing the Viterbi Backpointers 

•  Initialization 

•  Recursion 

•  Termination 
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Final state in the most probable state sequence. Follow  
backpointers to initial state to construct full sequence. 



Viterbi Backpointers  
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s1 
s2 

sN 

• 
• 
• 

• 
• 
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s0 sF • 
• 
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• 
• 
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• 
• 
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•    •   • 
•    •   • 

•    •   • 

•    •   • 
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Viterbi Backtrace  
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• 
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•    •   • 
•    •   • 

•    •   • 

•    •   • 

t1 t2 t3 tT-1 tT 

Most likely Sequence: s0 sN s1 s2 …s2 sF      



HMM Learning 

•  Supervised Learning:  All training 
sequences are completely labeled (tagged). 

•  Unsupervised Learning: All training 
sequences are unlabelled (but generally 
know the number of tags, i.e. states). 

•  Semisupervised Learning: Some training 
sequences are labeled, most are unlabeled. 
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Supervised HMM Training 

•  If training sequences are labeled (tagged) with the 
underlying state sequences that generated them, 
then the parameters, λ={A,B} can all be estimated 
directly. 

Supervised 
HMM 

Training 

John ate the apple 
A dog bit Mary 
Mary hit the dog 
John gave Mary the cat. 

. 

. 

. 

Training Sequences 

Det   Noun  PropNoun Verb  



Supervised Parameter Estimation 

•  Estimate state transition probabilities based on tag 
bigram and unigram statistics in the labeled data. 

•  Estimate the observation probabilities based on tag/
word co-occurrence statistics in the labeled data. 

•  Use appropriate smoothing if training data is sparse. 
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Learning and Using HMM Taggers 

•  Use a corpus of labeled sequence data to 
easily construct an HMM using supervised 
training. 

•  Given a novel unlabeled test sequence to 
tag, use the Viterbi algorithm to predict the 
most likely (globally optimal) tag sequence. 
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Evaluating Taggers 

•  Train on training set of labeled sequences. 
•  Possibly tune parameters based on performance on 

a development set. 
•  Measure accuracy on a disjoint test set. 
•  Generally measure tagging accuracy, i.e. the 

percentage of tokens tagged correctly. 
•  Accuracy of most modern POS taggers, including 

HMMs is 96−97% (for Penn tagset trained on 
about 800K words) . 
– Generally matching human agreement level. 
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Conclusions 

•  POS Tagging is the lowest level of syntactic 
analysis. 

•  It is an instance of sequence labeling, a collective 
classification task that also has applications in 
information extraction, phrase chunking, semantic 
role labeling, and bioinformatics. 

•  HMMs are a standard generative probabilistic 
model for sequence labeling that allows for 
efficiently computing the globally most probable 
sequence of labels and supports supervised, 
unsupervised and semi-supervised learning. 


